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Abstract
Current research in the biosciences depends heavily on the effective exploitation of huge

amounts of data. These are in disparate formats, remotely dispersed, and based on the

different vocabularies of various disciplines. Furthermore, data are often stored or distributed

using formats that leave implicit many important features relating to the structure and

semantics of the data. Conceptual data modelling involves the development of implementation-

independent models that capture and make explicit the principal structural properties of data.

Entities such as a biopolymer or a reaction, and their relations, eg catalyses, can be formalised

using a conceptual data model. Conceptual models are implementation-independent and can

be transformed in systematic ways for implementation using different platforms, eg traditional

database management systems. This paper describes the basics of the most widely used

conceptual modelling notations, the ER (entity–relationship) model and the class diagrams of

the UML (unified modelling language), and illustrates their use through several examples from

bioinformatics. In particular, models are presented for protein structures and motifs, and for

genomic sequences.

INTRODUCTION
Driven by genome projects and the recent

development of other new techniques,

such as proteomics or ligand screening,

the amount of biological data is rapidly

increasing (see Baxevanis1 for an overview

of current databases). However, not only

are there ever-increasing quantities of data

available in biology, the variety and

complexity of the different information

resources are also tending to increase with

time.

Large centralised repositories for data,

such as SWISS-PROT or Genbank, are

carefully managed, often using modern

data management techniques. However,

the increasing prevalence of experimental

techniques that generate large quantities

of data means that ever more laboratories

are faced with information management

challenges. Managing large quantities of

complex data in a systematic and efficient

manner is not straightforward, and ad-hoc

techniques that may have sufficed in the

past will increasingly be a barrier to

effective integration and analysis of

experimental results in the future.

One important aspect of data

management is coming to a clear

understanding of the nature of the

available data. What different kinds of

data are generated by specific

experimental techniques? How do these

relate to other data produced in the

laboratory or beyond? What information

is derived from the primary data? What

data need to be stored in perpetuity, and

what can be summarised and then

backed-up or discarded? What additional

information is required to validate or

analyse different data sets? What quantities

of information are likely to be produced

and will need to be stored as a result of an

experimental activity? Obtaining answers

to questions such as these in a systematic

way is much more straightforward in the

context of clear and comprehensive

models of the relevant data. Conceptual

data models make explicit the structural

properties of data, and as such are useful

for capturing, refining and

communicating details about the data in a

laboratory or a database.

Once a conceptual model of data has
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been produced, it tends to look like

common sense. However, constructing

conceptual models is a challenging, often

iterative process. This paper seeks to

increase the profile of conceptual

modelling techniques in bioinformatics,

and to collect together representative

examples of conceptual models that can

be used or built upon to support

information management tasks in different

parts of bioinformatics. The target

audience is primarily (computational)

biologists and bioinformaticians with

minimal experience of data modelling and

database design, who nevertheless find

themselves involved with the

development of biological databases. Thus

we hope to improve the ease with which

bioinformaticians can communicate with

experts in data modelling, and then to

judge independently if conceptual

modelling is appropriate for their needs or

not.

The paper is structured as follows. The

next section provides some background

material on conceptual models and design

processes, and gives some definitions

which are valid across most modelling

notations. The section following on

‘Entity–relationship modelling’ gives an

overview of ER modelling, and illustrates

the approach using a model of sequence

patterns. The section ‘Unified modelling

language’ gives an overview of UML class

diagrams, and illustrates such diagrams

using models of protein structure and

genome sequences. The final section

discusses the role of conceptual modelling

in bioinformatics.

CONTEXT
Definitions
A conceptual data model (CDM) provides

a notation by which the structural

properties of data (the structuring of data

and their relationships) from a certain

domain (a field of knowledge such as

biochemistry or structural molecular

biology) can be described in a precise but

implementation-independent manner.

The resulting model can then be more or

less directly translated into the actual

implementation, whether relational,

object-oriented or semi-structured, and

eventually populated, ie ‘filled’, with the

actual data.

Many notations have been proposed for

conceptual modelling, but most have two

principal notions: entity types and

relationships.

• Entity types: an entity type provides a

description of the properties that are

shared by a collection of entities in a

domain. For example, Protein could be

an entity type, with attributes including

sequence, name, molecular weight,
accession number and species. A single

entity type is expected to have many

instances, each of which gives values to

the attributes specified in the

corresponding type. For example,

human Æ-haemoglobin and whale

myoglobin are the names of two

instances of the entity type Protein.

The values of their attribute species are

human and whale respectively.

• Relationships: a relationship

represents an association between two

(or more) entity types. For example, a

Protein could interact with several

other Proteins, or could be a member
of a family. There may be different

categories of relationship, which

characterise the nature of the

relationship. For example, there may be

a notation to represent the fact that one

entity type is-part-of another (eg a Beta
Strand is part of a Sheet in the

secondary structure of a Protein) or that

one entity type is-a-kind-of another (eg

an Enzyme is a kind of Protein).�

Once constructed, a conceptual data

model of a domain describes the data in

the domain, and can be seen to place

constraints on the attributes and

relationships that are valid within the

domain. A conceptual data model is often

developed in the context of an application

The principal notions in
conceptual modelling
are: entity type and
relationships

�(For the sake of simplicity we ignore the fact

that RNA can be an enzyme.)
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or a collection of tasks that is to be carried

out. However, many biological databases

contain data on a particular species or

resulting from a particular type of

experimental or analytical activity, and are

thus not focused on particular uses of such

data. In general, though, making clear and

appropriate modelling decisions depends

on the purpose for which the data are

required. For example, in a protein

database it may be necessary only to know

the name of each species of each Protein.

If so, the name of the species can be an

attribute of Protein. However, if it is

necessary to know more about the species

(eg its taxonomic name as well as its

common name, the areas in the world

where it resides, etc.), then species is

better modelled as an entity type, with

attributes and relationships of its own.

The design process
A design activity involves a combination

of a design process and a modelling

language. A design process provides a

sequence of steps through which the

developers proceed when constructing a

conceptual model. In the same way as

there is no universally accepted notation

for conceptual modelling, there is also no

universally accepted design process.

Figure 1 outlines a possible design

process based on one provided in Elmasri

and Navathe.2 This process depicts three

tasks:

• requirements analysis – the

identification of the needs of the

application and the sources of

information that the modelling activity

seeks to support;

• conceptual design – the use of a

conceptual data modelling notation to

describe the data identified in

requirements analysis; and

• logical design – the development of an

There is no universally
accepted standard for
either the design
process or the notation

Figure 1: Example of a conceptual
modelling process. Especially at the level of a
conceptual model many inconsistencies and
neccessary amendments may become
obvious such that a revision at this stage may
be necessary and useful to avoid more
demanding revisions at a later stage. See text
for more details
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implementation data structure from the

conceptual model, such as the creation

of a collection of table definitions for

use in a relational database system.

An important feature of the process

illustrated in Figure 1 is that it is iterative

– the construction of the conceptual

model may raise issues that need to be

clarified by revisiting the tasks to be

supported or the sources of information to

be described.

The role of the conceptual data model

in the design process is to allow precise

statements to be made about the data of

interest in a manner that can be

communicated to others. The

comprehensibility of a conceptual model

is important, as it is used both in

discussions with subject experts whose

understanding of the relevant data is to be

described, and by the developers of

software that makes use of the data. A

general remark on conceptual models is

that they are usually much easier to read

than to construct.

In our experience, conceptual data

modelling is often best conducted as a

collaborative process, in which models are

constructed incrementally, for example,

on a whiteboard, so that different people

can provide input on the features of the

data being modelled. In general, we have

been involved in modelling activities in

bioinformatics in which computer

scientists and biologists work together on

models. This sort of joint approach is

probably the most effective in practice, as

experienced modellers should be able

both to ask pertinent questions that guide

the development of a model and avoid

modelling errors. Developing models that

describe all the data that are valid and

relevant, while prohibiting the inclusion

of data that are invalid or do not occur in

practice is generally both a challenging

and rewarding process.

Selection of conceptual data
models
There are many different conceptual data

modelling notations, although the most

well-known families are the entity–

relationship (ER) models2,3 and the

object-oriented models.4–6 In our

experience the success or failure of a

conceptual modelling activity is not

generally dependent on the conceptual

modelling notation used. Thus the sorts of

issues that can appropriately influence the

selection of a CDM are local experience

in the use of different techniques,

availability of appropriate modelling tools,

and likely implementation platform. In

terms of the latter, ER models are

targeted principally at database

applications, and the mapping of such

models onto relational database systems is

well understood. However, if an

implementation is likely to end up using

object-oriented programming,

middleware or database techniques,

working from an object modelling

language is likely to be most appropriate.

Details on how to develop

implementations from object models over

several different platforms are provided in

Blaha and Premerlani.7

ENTITY–RELATIONSHIP
MODELLING
An ER schema consists of entity types,

relationships and attributes. As described

above in the section on ‘Definitions’, an

entity type provides a description of the

properties that are shared by a collection

of instances in a domain. An entity type is

drawn as a rectangle that encloses its

name. For example, in Figure 2, DNA,

Protein, Enzyme, Reaction and

Biopolymer are all entity types. The

instances of an entity type are known as

entities. The attributes of an entity type

indicate what values can be stored to

identify or describe an instance of the

type. The attributes of an entity type are

depicted in ovals directly connected to

the entity type. For example, the entity

type Biopolymer in Figure 2 has attributes

accno (for accession number), name,

species and sequence.

One or more of the attributes of an

entity type may be designated as the key,

which is depicted by the name(s) of the

Conceptual data models
allow precise
statements
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attribute(s) being underlined in the

diagram. For example, accno is the key of

Biopolymer in Figure 2. This means that

there can be at most a single instance of

Biopolymer with a given accno. If no

single attribute of an entity type can be

used as the key, then it is possible that

several attributes can be used together to

uniquely identify the instances of the

type, in which case that group of

attributes can be underlined in the schema

diagram. A key with several components

is known as a compound key.

It is common for several entity types

within a schema to share attributes and

relationships. For example, both Protein
and DNA have a species. Such sharing of

attributes can be represented using is-a-

kind-of relationships between entity types,

which are depicted in Figure 2 by arrows

from the more specialised type to the

more general type through a circle

containing IsA. For example, both DNA
and Protein are kinds of Biopolymer in

Figure 2, and Enzyme is a kind of Protein.

Biopolymer is said to be the supertype of

both DNA and Protein, and both DNA
and Protein are subtypes of Biopolymer.

Such relationships have two principal

roles. Firstly, the properties of a supertype

are inherited by its subtypes, thereby

leading to more concise models. For

example, in Figure 2, the attributes

associated with Biopolymer are all

inherited by Protein and DNA through

the IsA relationship. Secondly, the is-a-

kind-of relationship makes explicit

relationships between the collections of

instances of different entity types. For

example, from Figure 2 one can deduce

that every instance of Enzyme is also an

instance of Protein, and that every

instance of Protein is also an instance of

Biopolymer.
Any relationship other than the is-a-

kind-of relationship between two types is

depicted by a rhombus that encloses the

name of the relationship, and which is

linked to the related entity types.

Although some ER models allow a single

relationship to be between more than two

entity types, it is often considered good

practice to use only binary relationships.

The catalysis relationship in Figure 2 is

an example of a binary relationship

between the entity types Enzyme and

Reaction that indicates which reactions

are catalysed by which enzymes. A single

Enzyme (eg peroxidase) may catalyse

many reactions (as, for example,

peroxidase acts on several substrates), and

a Reaction (eg peroxide degradation) may

Figure 2: ER notation for some biological
concepts. Reaction is related to Enzyme

through a many-to-many relationship (see the
section on ‘Entity–relationship modelling’ for
more details). Each enzyme is a protein,
which is depicted by the IsA relationship
between Enzyme and Protein. Both DNA

and Protein are kinds of Biopolymer as is
depicted by the IsA relationship. This
particular schema is not part of any published
model, but has been designed for illustration
purposes
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be catalysed by many different enzymes

(eg peroxidase and catalse). Therefore,

this relationship is a many-to-many

relationship. This is depicted by the M
and the N in the figure, which essentially

denote arbitrary numbers of participants

in the relationship. The cardinality

specified for a relationship can be left

open ended, using M or N, or can be

specified to be a particular value. Where a

specific value of 1 is used, this gives rise to

one-to-one or one-to-many relationships,

the latter in particular being very

common (eg a Genome has many

Chromosomes, but a Chromosome is

specific to a single Genome).

Relationships can themselves have

attributes. It is appropriate for a

relationship to have an attribute if the

value to be recorded describes the

relationship, and is not an attribute of

either of the participating entity types. For

example, the Michaelis constant would be

specific for the pair of the reactant and the

enzyme involved. A relationship may

relate an entity type to itself. For example,

an interaction relationship could be used

to indicate which Proteins are known to

interact with each other.

Given the constructs described above,

there are likely to be many plausible

conceptual models for describing a data

set. Such variety can derive from

differences in the purpose to which the

data is to be put, or the stylistic

preferences of the modeller. As a case in

point, relationships can be more or less

precisely modelled. For example, in

Figure 2, the catalysis relationship

between the entity types Enzyme and

Reaction models the role of a specific

kind of Biopolymer in a Reaction.

However, the fact that an Enzyme is

related in some way to a Reaction could

have been represented by a much more

general relationship, with a name such as

participatesIn between Biopolymer and

Reaction. Which approach is most

suitable depends on the nature of the data

to be modelled and the purpose for

which the resulting database is being

developed.

ER model for fingerprints
Conceptualising the relationship between

sequences, their similarity and function is

essential to exploiting the predictive

power of comparative functional

inference. PRINTS is a database of

fingerprints, grouped sequence patterns that

are characteristic of specific protein

families.8 Its major advantage lies in the

possibility of selecting levels of groupings

for family definitions by choosing

different collections of motifs from a

fingerprint. This is important because the

definition of a protein family may vary

with the level of stringency one decides to

choose. Patterns are derived from SWISS-

PROT and TrEMBL.9 PRINTS is a

typical example of a database in

bioinformatics that was first implemented

using ASCII files, and then migrated to a

relational platform for performance and

functionality reasons. Part of the

migration process involved the

development of a conceptual model for

the data. PRINTS currently contains

1,210 entries and 7,200 motifs.8

The schema consists of three basic

entity types, namely Sequence,

Fingerprint and Motif, as shown in Figure

3. Each Sequence may contain any

number of Motifs, each of which must

appear in one or more sequences (many-

to-many relationship). Each Fingerprint is

a collection of Motifs, but each Motif
must appear in one and only one

Fingerprint. This is because within

PRINTS a Motif is defined as a pattern

that appears in a specific Fingerprint.
However, a mobile protein fragment

could cause exactly the same pattern to

appear in another Fingerprint, which is

handled in this context by the definition

of more than one Motif associated with

the same pattern. The relationship

between a Fingerprint and a particular

Sequence represents a functional

characterisation of the protein.

Depending on the number of Motifs in a

Fingerprint which match a particular

sequence, this assignment is considered to

be more or less reliable. If all motifs occur

in the right order, the relationship is
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considered to be a ‘true positive’. If fewer

motifs are matched in the sequence the

possible values are ‘true partial’ or ‘false

partial’. This is denoted by an attribute

(accuracy) which is associated with the

Assignment relationship, which can take

any of these three values. Thus accuracy
is appropriately an attribute of the

relationship, as the accuracy is a

characteristic of the relationship between

a Sequence and a Fingerprint, and not a

characteristic of either of these entity

types themselves.

Implementing from ER models
Although in principle the ER model is

implementation platform-independent, it

is most commonly used in conjunction

with relational databases, and design

environments supporting ER often

include facilities for generating table

definitions from an ER model. As the

relational model provides different

modelling facilities from the ER model,

implementing an ER model using a

relational database involves mapping the

constructs of the ER model into those of

the relational model.

Many constructs of the ER model can

be mapped quite directly onto relational

tables for implementation. For example,

each entity type is represented by a table

in the relational model. Thus in the

relational implementation of PRINTS,

there are Fingerprint, Sequence and Motif
tables, as shown in Figure 4.

The attributes of an entity type are

mapped to attributes of the corresponding

table, and the key of an entity type

generally becomes the key of its

corresponding table.

The way a relationship in the ER

model is mapped onto tables depends

principally on the cardinality of the

relationship. For example, a one-to-many

relationship is represented by storing the

key of the table at the 1 end of the

relationship as an attribute of the table at

the many end (a foreign key). For example,

in Figure 3, the FingerprintAccession
attribute of Motif is a foreign key of

the Fingerprint table. By contrast, a

Figure 3: ER model for the PRINTS-S
database

8

Figure 4: Examples of tables generated
from the ER model of Figure 3. See section
on ‘Implementing from ER models’ for
further details
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many-to-many relationship is represented

by a table that has a compound key

consisting of the keys of the related tables,

as in the case of the table Assignment.

UNIFIED MODELLING
LANGUAGE (UML)
UML5 is the industry standard object

modelling language. In this paper the

focus is on class diagrams, which are used

to model the structural aspects of data

within UML. However, UML contains

many different modelling notations,

which also allow the behaviour of an

application to be described in different

ways, so UML can be seen as providing

comprehensive application modelling

facilities. For example, case diagrams can

be used during requirements analysis to

identify the principal categories of users

making use of a system and the activities

carried out by those user groups.

As an object-oriented modelling

language, the central notation in UML is

the class diagram. A class is a description of

the attributes, operations and relationships

of a set of objects. As such, a class in UML

is analogous to an entity type in ER

modelling. The instances of a class are

referred to as objects, and are analogous to

entities in ER modelling.

A class is depicted as a rectangle, within

which is stated the name of the class.

Optionally, the names and types of

attributes and operations can also be

depicted within the rectangle that

represents the class. For example, Figure 5

includes the class Protein, which has

attributes name and accessionNumber,
both of which are of type String. The class

Protein also has an operation display(),
which can be expected to print or draw

objects that are instances of Protein. By

convention, the names of classes start with

capital letters, and the names of attributes

start with lower case letters. Where a

name of a class or attribute is constructed

from several words, the later words start

with capital letters, as in

accessionNumber. Unlike ER models,

UML class diagrams do not support keys

– this is probably because typical

implementation platforms for UML

classes do not support keys, whereas ER

models are typically mapped to relational

databases for implementation, where keys

have a prominent role.

UML supports the description of

several different kinds of relationships

between classes. An is-a-kind-of

relationship is depicted by a closed headed

arrow, eg as from Enzyme to Protein in

Figure 5. Protein is said to be a superclass

of Enzyme, and Enzyme a subclass of

Protein. All the attributes, relationships

and operations of a superclass are

inherited by its subclasses. A class may

have zero, one or more superclasses or

subclasses.

Relationships (other than the

UML is a standard
object modelling
language

Figure 5: Example
UML model. Three
concepts (Enzyme,
Protein,
TertiaryStructure) from
three domains
(biochemistry, molecular
biology and structural
biology respectively) are
integrated in one schema
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generalisation relationship) between

classes are known as associations in UML.

For example, the fact that a protein may

be associated with several experimentally

determined tertiary structures can be

represented by the association illustrated

in Figure 5. The association

hasDeterminedStructure links a Protein
to information about its experimentally

determined TertiaryStructures. It is

possible to name associations in different

ways. For example, when a class

participates in a relationship it plays some

role in the relationship; roles are the most

common way of naming relationships in

UML. In Figure 5, the class

TertiaryStructure is fulfilling the role of

the TertiaryStructure of the associated

Protein. Furthermore, from the

perspective of the TertiaryStructure, the

class Protein is playing the role of a

modelledProtein.

In analogy to the ER model, it is also

possible to annotate a relationship with

some information on its cardinality. For

example, in Figure 5, a TertiaryStructure
is the structure of a single protein (the

default cardinality, and thus not shown

explicitly), and a Protein may have several

experimentally determined

TertiaryStructures (as depicted by the 0�,

where � represents ‘many’).

As well as annotating an association

with its cardinality, a further structure

modelling feature of UML that is used in

the subsequent examples is aggregation,

which allows the representation of the part

of relationship. An aggregation is depicted

by e at the end of the relationship that

represents the whole in the part–whole

relationship. Examples of aggregations are

given in Figure 6, for example to indicate

that a Chain is part of a Protein and that a

SecondaryStructureElement is part of a

Chain.

In this and subsequent sections, UML

diagrams have been drawn using the

UML editor ARGO, which can be

downloaded.10,11 It should be noted that

UML class diagrams include more

modelling facilities than are described

here; for further details, see Booch et al.5

UML model for protein
structure
This section describes a UML model for

protein structure data, which is a

simplification of the object-oriented data

model provided in Gray et al.12 The

original model was implemented directly

using an object database system. The

UML diagram is given in Figure 6. The

model includes primary, secondary and

tertiary structure information. The

topmost class in Figure 6 is Protein, of

which all other classes are either directly

or indirectly components. All the

relationships between classes in Figure 6

are either aggregation or generalisation

relationships.

A Protein has several attributes, which

indicate its name, the code by which it is

identified in PDB, and its

molecularWeight. Each Protein consists

of one or more Chains. A Chain can be

seen as consisting of a collection of

Residues or as a collection of

SecondaryStructureElements.
The class Residue provides both

primary structure (the name of the amino

acid at a particular position within the

Chain) and tertiary structure information

(the coordinates of the residue within the

model). The x, y and z coordinates of

each atom associated with the Residue are

modelled using the class Coordinates,
which associates the position of each atom

with the name of the atom (eg ca could be

used to refer to the Æ-carbon).

The class SecondaryStructureElement
is an abstract class – this is depicted in the

diagram by the fact that its name is in

Courier.� An abstract class is one for

which no direct instance objects are ever

created, but which can play a useful

organisational role in the diagram. In this

case, SecondaryStructureElement is the

superclass of Loop, Helix and Strand, all

of which can have direct instances.

Two of the subclasses of

SecondaryStructureElement have

�(This should really be depicted in italics, but

ARGO generates a Courier font in its Post-

script generator.)
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additional properties that are not shared

by all SecondaryStructureElements. In

particular, Helix has the attribute type

which could, for example, be Æ or

threeten, and each Strand is related to the

Sheet of which it is part.

The modelling of

SecondaryStructureElements illustrates a

common dilemma in modelling –

whether to use the generalisation

hierarchy or an attribute to categorise the

members of a collection. For example, the

addition of an attribute type on

SecondaryStructureElement could be

seen as removing the need for the

subclasses Loop, Helix and Strand – the

type attribute could then take on a value

that indicates whether a specific

SecondaryStructureElement is a Loop, a

Helix or a Strand. A criterion that

encourages the use of a generalisation

hierarchy in this sort of situation is the

presence of attributes or relationships in

the subclasses that are not applicable to

the superclass (eg the relationship

between Strand and Sheet). As there are

no attributes or relationships specific to

different kinds of helices in Figure 6, the

different kinds of Helix are distinguished

between using the attribute type, rather

than through the introduction of

additional subclasses.

In terms of modelling practice, UML is

relaxed in many things. For example, in

Figure 6 not all relationships are given

names or role names – it is hoped that the

use of aggregation will allow the user to

infer names such as consistsOf and

isPartOf rather than these having to be

given explicitly; classes are given

attributes, but the types of the attributes

are not specified in the diagram – in

general it is good practice when

modelling at least to identify the attributes

associated with different classes, as this is

important in clarifying exactly what data

each class actually models; and no classes

are given operations – the original

schema was produced to describe the data

and not the way the data are used, so the

emphasis was not on the behaviour

associated with the classes.

UML model for genome
sequences
The UML model provided in Figure 7,

which is originally from Paton et al.,13 can

be used to describe sequence information

Figure 6: UML model
for protein structure.
See the section on ‘UML
model for protein
structure’ for further
details
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for fully sequenced eukaryotic genomes.

The model has been used as the basis for

an implementation using an object

database, and has been populated with

sequence data from Saccharomyces cerevisiae.

A Genome consists of one or more

Chromosomes, each of which has a

number and a sequence. These

Chromosomes in turn consist of a

collection of potentially overlapping

ChromosomeFragments, each of which

represents a TranscribedRegion or a

NonTranscribedRegion within the

chromosome. The next/previous

relationship on ChromosomeFragment is

an example of a recursive relationship,

which is used in this context to provide

an ordering to the

ChromosomeFragments. In fact, UML

allows a constraint to be specified for a

relationship, to the effect that the

elements at one end of the association are

{ordered}. This can be written at the end

of the relationship where the ordering

Figure 7: UML model for eukaryote
genome sequence. See the section on ‘UML
model for genome sequences’ for further
details
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exists, but it may additionally be useful to

have a next/previous relationship to

directly associate related regions.

The class NonTranscribedRegion is

used to represent features such as

promoters, centromeres and telomeres,

which are only distinguished between in

the description attribute – these could

generally benefit from more detailed

modelling than is provided here. The

DNA sequence associated with each

ChromosomeFragment is modelled by

recording the start and end positions of

the sequence of each fragment in

ChromosomeFragment. These start and

end positions can be used to obtain the

actual sequence of a

ChromosomeFragment by looking up

the relevant range in the sequence

attribute of Chromosome.

The modelling of transcribed regions is

somewhat involved, in that it is necessary

to be able to capture alternative splicing.13

Figure 8 illustrates the relationship

between several of the classes in the

model. The top part of the figure

represents the PrimaryTranscripts
associated with a single

TranscribedRegion, and the bottom part

of the figure illustrates two

SplicedTranscripts that have resulted from

alternative splicing. The Introns, which

are shown shaded, do not contribute to

the SplicedTranscripts, but several of the

SplicedTranscriptComponents can

potentially end up as part of differently

constituted SplicedTranscripts. The many-

to-many relationship between

SplicedTranscriptComponent and

SplicedTranscript represents the fact

that a SplicedTranscript is commonly

composed of more than one

SplicedTranscriptComponent, and that

on occasion there may be several

alternative SplicedTranscripts that can

result from a collection of

SplicedTranscriptComponents.
This model for genome sequences

illustrates the extent to which the purpose

of the model influences what is to be

modelled. The model is explicitly targeted

at fully sequenced genomes, and there is

no attempt to describe the experimental

data generated during the sequencing. An

example of a conceptual model for

genome mapping is given in Hu et al.14

Implementing from UML
models
In principle, UML models are

independent of the implementation

platform to be used. In practice, mapping

UML models, including class diagrams,

onto object-oriented implementation

Figure 8: Illustration of
alternative splicing. See
the section on ‘UML
model for genome
sequences’ for further
details
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platforms is more straightforward and

intuitive than mapping onto non-object-

based platforms. This is not to say,

however, that it cannot be done. In the

same way as the section on ‘Implementing

from ER models’ provided some rules to

guide the mapping of ER models to the

relational model, Blaha and Premerlani7

provide a comprehensive description of

how to map class diagrams onto relational

tables. This process is along the same lines

as the process for ER models, but the

absence of keys in UML models and the

tendency for inheritance to be used more

widely in object models, often makes the

mapping process more involved.

Here, the process of implementing

from a UML model is illustrated using the

genome schema from Figure 7, which has

been implemented using the object

database POET.15

While POET provides more than one

way of implementing database classes, one

makes use of Java class definitions, which

are preprocessed by the POET system. In

essence, POET then allows objects that

are instances of the preprocessed classes to

be stored in the database. A schema

fragment in POET Java is illustrated in

Figure 9.

A class from the UML diagram maps

into a class in Java. Each attribute from

the UML class maps to an attribute in

Java. Relationships in UML map onto

attributes in one (or both) of the related

classes. A complication here is that

neither Java nor POET supports

bidirectional relationships automatically,

so if the implementer wants both roles

of a relationship to be represented

directly in the Java classes, some effort is

required to keep these roles consistent

with each other. For example, in Figure

7, if the chromosomes attribute of

Genome is to be consistent with the

fromGenome attribute of Chromosome,

application programs or class methods

must be programmed to support such

consistency. Figure 9 also illustrates the

use of the POET collection class

SetOfObject, which is one of several

collection classes provided with POET,

following the industry standard for

object databases.16

A further immediate change in

perspective tends to take place when

mapping from UML class diagrams onto

the constructs of object-oriented

programming languages. Although UML

class diagrams place quite a substantial

emphasis on structural aspects of the data

(such as attributes and relationships), it is

generally considered good practice to

make the structural properties of a

program class private, and to provide

access to such properties only through

methods (see, for example, the get and set

methods in Figure 9). Languages such as

Java have well-defined conventions for

defining and naming methods used for

accessing structural properties.

DISCUSSION
Conceptual data models are a proven

technology, in that they have been in

widespread use in numerous software

projects for many years. However, they

have not been used particularly widely

with biological and biochemical data,

despite the increasing number and

complexity of information resources in

these areas. This paper seeks to increase

awareness of the role that conceptual

models can play in describing and

understanding the structure of biological

data, and has provided example models

using the two most widely used

conceptual modelling notations.

UML v. ER and other
implementational issues
The conceptual modelling notations

illustrated in this paper, namely the ER

model and UML class diagrams, were

developed at different times for somewhat

different purposes. The ER model was

developed to support the design of

database schemas, in particular schemas

for relational databases. As such, ER

models have reasonably direct and

systematic mappings onto relational

databases for implementation,2 and

support modelling notions that are

familiar from the relational model (eg

While ER was
developed earlier on
and for relational
databases, UML
supports object-
oriented design better
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keys). By contrast, UML class diagrams

are only one of a collection of diagrams

that together support the object-oriented

design of complete applications. As class

diagrams are not targeted at any specific

category of application, mapping of these

diagrams onto implementation platforms

can be less direct or systematic than in the

Figure 9: Mapping of
Genome and
Chromosome to POET
Java classes
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narrower context within which ER is

used, but it is often straightforward to

map class diagrams onto object-oriented

implementation platforms.

While there is now a standard definition

of UML, there are many ER proposals,

which themselves differ significantly, eg in

terms of the ways that inheritance is

supported. In this paper we have thus

taken the view that it is appropriate to

choose and describe a specific ER

proposal, but not to elaborate on the ways

this specific proposal differs from UML.

We have also deliberately avoided detailed

discussion of how behaviour is modelled

in UML, as this is a large area for which

there is no room in the paper.5

Outlook
Developing conceptual models is not

straightforward, which in turn reflects the

fact that obtaining a clear understanding

of the semantics of a piece of data is not

always easy. Obtaining a clear and agreed

view of the data in a domain is

challenging, as different people will see

things in different ways, use terminology

differently and emphasise different

features. The situation is further

complicated since biosciences are non-

axiomatic and the views on the same or

similar concepts vary strongly among

different, although closely related,

communities. However, conceptual

models can be helpful in developing,

making explicit and communicating clear

and detailed descriptions of data that is

available or that is about to be produced.

It is hoped that this paper can extend

the use of conceptual models within

bioinformatics, and thus ease the currently

growing problems with managing and

sharing biological data.
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